Quantum Control Architecture -- Bridging the Gap between Quantum Software and Hardware

  报告时间: 2019年10月14日(周一) 上午 10:00—12:00

  报告地点: 计算所 446室

  主 讲 人 :付祥 (国防科技大学 助理研究员)

  报告摘要:

  Quantum computers promise to solve problems intractable by classical computers. Different to the von-Neumman architecture used by classical computers, (most) quantum computers adopt the process-in-memory paradigm, where quantum bits (qubits) are the place both for processing and storage. Due to the heterogeneity between quantum storage & processing (in quantum states) and quantum control (with classical analog signals), a quantum computer requires a dedicated control system apart from the quantum processor allocating qubits.

  Addressing the flexibility and scalability issues of the quantum control system as observed in experiments, we proposed an executable quantum instruction set architecture (QISA), named eQASM, which can be supported by our proposed QuMA-series control microarchitecture. eQASM/QuMA can support the widely-used "classical control, quantum data" paradigm, and is highlighted by a quantum-classical hybrid programming model, configurable QISA at compile time, comprehensive program flow control, precise timing control, etc.

  Driven by the difficulties of using current quantum programming languages and compilers to generate eQASM code, we started developing a quantum programming language targeting near-term devices (named Qingo) in collaboration with multiple universities/institutes such as Peng Cheng Lab. Before ending this talk, I will give a short introduction to Qingo with its compiler, which will be open-source around Jan. 2020.

  主讲人简介:

  Xiang Fu is an assistant professor in Quantum Computing Lab, Institute for Quantum Information and State Key Laboratory of High-Performance Computing (HPCL), National University of Defense Technology (NUDT), Changsha, Hunan, China. He got his bachelor's degree from the Department of Electronic Engineering at Tsinghua University in 2011, and master's degree from College of Computer, NUDT in 2013. He started doctoral research on quantum control (micro)architecture at QuTech, Delft University of Technology in 2014 and got his Ph.D. in 2018. He is honored by the best paper award of MICRO 2017 and Top Picks 2017. His current research interest include quantum computer architecture, and quantum programming language and compiling.

附件:
申慱国际娱乐开户最高返点 菲律宾申博太阳城电脑客户端下载登入 申博开户服务登入新闻 申博开户服务登入新闻 希尔顿游戏佣金
888集团游戏sunbet官网 澳门老葡京公司游戏 申博网址大全 速8彩票是真的吗 利来国际游戏代理洗码合作
钱柜娱乐777 太阳城AG国际馆 大丰收游戏备用网址 永利赌场百家乐 bet365开户向导
申博太阳城游戏开户 新濠天地优惠劵 澳门太阳城真人荷官 棋牌活动信息 合肥金沙酒店